נגישות

USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms

מחקרים

USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms- Tamar Harel

https://pubmed.ncbi.nlm.nih.gov/38182161/

Intisar Koch 1Maya Slovik 2 3Yuling Zhang 4Bingyu Liu 4Martin Rennie 5Emily Konz 1Benjamin Cogne 6 7Muhannad Daana 8Laura Davids 9Illja J Diets 10Nina B Gold 11 12Alexander M Holtz 13Bertrand Isidor 6 7Hagar Mor-Shaked 2 3Juanita Neira Fresneda 14Karen Y Niederhoffer 15Mathilde Nizon 6 7Rolph Pfundt 10Meh Simon 16Apa Stegmann 17Maria J Guillen Sacoto 18Marijke Wevers 10Tahsin Stefan Barakat 19 20Shira Yanovsky-Dagan 3Boyko S Atanassov 21Rachel Toth 22Chengjiang Gao 4Francisco Bustos 23 24Tamar Harel 25 3

Affiliations Expand

  • PMID: 38182161 

Abstract

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.